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Abstract. A one-dimensional flume was designed and used for the quantitative measure-
ment of the parameters of saltation and underwater collision for plastic balls transported over
an unrippled bed by flowing water. Computer simulation reveals that saltation is maintained
by the roughness of the bed. A geometric probability argument based only on the grain
size distribution is used to derive the distance that a particle travels before entrapment,
which turns out to be approximately proportional to the radius, as it has been previously
measured. In the appendix the phenomenological stochastic transport equation is rederived
from the basic assumptions.

Let us consider a uniform flow of water over We will consider in detail what maintains

a smooth, unrippled bed of sand, the water saltation, the mechanism of collision with the

moving just slightly faster than the threshold bed, and how far a grain travels before it finds

velocity, so that few sand grains are in motion a hole. In the appendix we will stand back

at a given time. Much work has been done on from these mechanical details, and by means

the equilibrium of forces and their fluctuations of an analogy to the stochastic theory of chrom-

on a grain poised to move [Jeffreys, 1929; atography of molecules we will look at saltation
Rubey, 1938; White, 1940; Nevin, 1946; as a two-state stochastic process in which the

Kalinske, 1947; Chepil, 1945, 1958, 1959, 1961; grain alternates between mobile and contact

Einstein and El-Samni, 1949; Ippen and Verma, 'phases' [McQuarrie, 1963; Carmichael, 1968].
1955; Yalin, 1958, 1963; Bagnold, 1963; Raud-
kivi, 1967]. A grain moves from the bed when EXPERIMIENTS WITH A ONE-DIMENSIONAL BED

lift and drag forces momentarily overcome To follow a particle in the course of a few

gravity and friction. Once the grain is on its saltations, it is helpful to restrict its motion to

way, it proceeds downstream in a sequence of a vertical plane, so that it stays in the focal
trajectories called saltations [Gilbert, 1914; plane of a camera. For this purpose approxi-
Bagnold, 1935, 1936, 1941; Kalinske, 1942; mately 2000 soft, white vinyl balls with a

Kawamura, 1951; Danel et al., 1953; Yalin, radius of 0.332 cm and a density of 1.30 g/cm'

1958, 1963]. The grain stops [Einstein, 1937, (Parks no. 278 Schmeisser pellet gun ammuni-
1950] when it enters a depression or 'hole,' tion, Park Plastics Co., Linden, N. J.) were
whose definition depends on the preceding purchased and placed in a flume consisting of

forces and the local geometry. Later the grain two plexiglass sheets 0.63 cm thick and 180 x

may either resume movement or be covered 20 cm high kept 0.79 cm apart by meter sticks.

by other grains coming to fest [Polya, 1937; When tap water (at approximately 20'C) was
Galvin and Fristedt, 1964]. flowing through this flume at approximately
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170 cm'/sec, loose balls saltated readily over
the top stationary balls, which constituted a
'one-dimensional' bed. The surface spheres were
occasionally disturbed with a glass rod to
obtain a new bed configuration. The turbulence
of the incoming water was damped by forcing
it to flow around a glass rod before it reached
the part of the bed to be photographed. The
flume was used in a horizontal position only. Z

150
The balls were approximately hydraulically o

equivalent to coarse sands (about 0.1 cm in
diameter). 40

The photography was done with a Nikon F
camera with a Vari-Clos closeup lens. A 30

variable strobe provided illumination (generally)
at 67 flashes/see as a single ball was dropped 20 I I 0 0 . I 0

upstream in the flume. The shutter was opened . .3 04 0.5 .6 . 08 9

for 1 second when the ball reached the field .n depth of poper poath

mean water depth along path

of the camera. An increased aperture of 5-7of te cmera Anincease aprtur of5-7 Fig. 1. Vertical velo .city profile of the one-
f-stops below normal was required for a reason- Fig. 1. Vertical velocity profile of the one-

dimensional flume measured down from the sur-
able exposure of the moving balls without a face from photographs of the trajectories of paper
gross overexposure of the stationary ones. scraps (see Figure 2). The total water depth

The velocity profile was measured by pouring varied from 5.1 to 6.5 cm.
soaked square scraps of paper into the flume
and photographing them. The profile is re- forces are small in comparison to the internal
markably flat and dips only near the bed impulsive forces developed by the collision
(Figure 1). [Halliday and Resnick, 1962]. This situation

The terminal velocity of the balls in the was not the case with our plastic balls. In a
flume (v, = 18.1 cm/sec) was measured by glancing collision, the motion of the ball was
dropping them into the flume with the water nearly elastic (,7 = 900, Figure 3), but in a
still and photographing their descent at 33 head-on collision with a ball in the bed, the
flashes/sec. moving ball seemed not to bounce backward at

Some of the balls had small dents in them all. Thus the force due to the flowing water
that can be seen rotating in some of the photo- equals or surpasses the internal forces in this
graphs (Figure 2). In a typical example, the case.
rotational energy was 2 ergs, whereas the trans- In general, when a moving ball struck a sta-
lational energy was 90 ergs; thus the dynamic tionary ball in the bed, it did not bounce off
contribution of rotation to the trajectory was but rolled around it some distance and left at
probably insignificant and has been ignored in an angle above the horizontal. (In the rare
all calculations. (During a collision real sand cases in which the struck ball moved at all, it
grains with sharp edges should rotate more was totally dislodged.)
rapidly. This mechanism is perhaps significant Twenty-one simple collisions (in which only
for the loss of translational energy. On the other one ball in the bed was hit) were analyzed in
hand, the rotation of such a particle, at least detail by making tracings of 6.5 x enlargements
under water, should also be more rapidly (Figure 4) onto plastic sheets and taping them
damped than that of a sphere.) on the screen of the 12-inch cathode ray tube

U attached to an Adage graphics computer. A
NATURE OF THE COLLISION WITH THE BED Fortran program was written that allowed a
A point generally not emphasized in the beam displaying an image of a circle of adjust-

elementary study of two-body collisions is that, able radius to be moved around under the
even in an elastic collision, the momentum of control of potentiometers. In this manner the
the bodies is conserved only if the external coordinates of the consecutive positions of a
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where 7 = 00, the energy loss is double valued.
If the ball stops completely, all energy is lost.
However, if the flow manages to accelerate it
from a zero velocity, then the net energy loss
is much less.)

# -".When a sphere moves in close proximity to a
wall, the effective viscosity can increase up to a
few hundred times [Wang, 1967]. Eagleson
et al. [1958] find that the linear Stokes rela-
tionship holds for particles near a rough bed,
even though the Reynolds number is high. Thus
we will assume that the combination of these
two effects in our flume results in a linear
force-velocity relationship, despite Reynolds
numbers of up to 10'. (Yalin [1958, 1963]

assumes a quadratic relationship.) Let the pro-

portionality constant be s. Then at terminal
7 velocity

8so = mg (1)

,-~,,1.0

Fig. 2. Trajectories of five balls over the same
bed configuration. Each ball was dropped in the
flume to the left between the 10- and 30-cm

0.8-marks. Occasionally a ball effectively rolls at a oa
reduced speed along the bed instead of saltating.
The strobe flashed at 67 flashes/sec.

moving ball could be recorded, and the pro- 0 0

gram could calculate the speed, angle from o06

the horizontal, translational energy, and accel- A

eration of the moving ball at each point. -
Another program took the coordinates of the 00

two images just before the collision occurred 0.4-

and by using a linear extrapolation, calculated
the point of contact and, where possible, the
initial rolling velocity. The takeoff angle a
was measured similarly.

Let /3 be the angle at which a saltating ball 0.2-

arrives at the bed ball, 0 the angle between 00

the horizontal and the line of centers at impact,
and a the angle at which the ball takes off
(Figure 5). We define q = 0 - 8 to be the I
angle of incidence measured from the line con- o.o 00* 30" 60

°  
90,

necting the centers of the spheres at impact. ', = -
We found a clear correlation between the frac-

Fig. 3. Relative loss of translational energy
tional energy loss and 77 by measuring the immediately after collision of a ball with a
energy just before and just after the collision stationary ball in the bed versus the angle of
(Figure 3). (For nearly head-on collisions, incidence n (see Figure 5).
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where m, is the buoyant mass of the ball and g
is the gravitational acceleration.

During a collision the moving ball rolls over
the ball with which it has collided. Let us
assume that the water flow around the struck
ball follows the same arc, at least to the top.
If v is the speed of the ball, then

dv
m s(w - v) - mbg cos 0 (2)

where m is its mass and w the water speed.
Since v = 2r dO/dt, we obtain

d'O mbg I(w -2r dO/dt)
S- - Cos 0 (3)dt 2rm v

This nonlinear second order differential equa-
tion must be solved subject to two boundary
conditions. At t = 0, 0(0) is given by the con-
tact point. For dO/dt at t = 0, we assume
that (1) the velocity component along the line
of centers at initial contact is lost on impact Fig. 4. Close-up of a single collision photo-
and that (2) the tangential component is com- graphed with a strope at 67 flashes/sec. The
pletely retained, halos around the bed balls are their reflections

The first assumption is based on the fact that off the back wall of the flume. The ball is travel-
no backward bounces were ever observed. In ing to the right.

seven of the 21 collisions analyzed in detail, it
was possible to calculate the initial rolling from which we estimate w, to be 43 cm/sec.
speed and to compare it to the tangential com- This value is comparable to the flow velocity
ponent of the velocity just before impact. The (Figure 1).
ratio of these speeds varied from 0.66 to 1.47, The water flow during a collision is obviously
the mean being 1.01; thus the second assump- more complicated than we have assumed, and
tion seems approximately justified. some attempt should probably be made to

The rolling ball should separate from the measure the flow pattern directly. Thus an
ball in the bed when the centrifugal force underwater collision of a saltating grain is fairly
balances the force of gravity: complicated, even if that grain is a sphere, and

the hydrodynamics of such underwater collisions
mv2/2r. > mbg sin 0 (4a) has yet to be developed.

or when SALTATION TRAJECTORIES

(dO/dt)2/sin 0 > mbg/2rm (4b) The spheres bouncing down our one-dimen-

Experimentally, the ratio of the left to the sional flume exhibited typical saltation trajec-
right half of inequality 4a varied at takeoff tories, the arc starting off at a relatively steep
from 1.1 to 5.3 for 19 cases, the average being angle and ending with the ball striking the bed
3.38; thus the takeoff angles a were lower than at a low angle (Figures 2 and 6). Each ball
those calculated by this crude theory. The dropped into the flume went through a unique
water flow probably has an inward radial com- set of trajectories. Nevertheless, it is interesting
ponent w, pressing the rolling ball against the that a given bed configuration has 'hot spots'
stationary one. The separation criterion then where collisions occur preferentially (Figure 2).
becomes (These spots may be due to downstream

wakes.)
(dO/dt)2 > (mg + sw,) Let x represent the distance along a horizontal
sin 0 - 2rm (5) bed and y the height above the bed. Then the
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/

n 8

//

Fig. 5. Definition of angles during a collision. The dotted line indicates the trajectory of
the center of the moving ball.

x and g components of the force on a ball
moving above the bed are given by •

F, = mbg- sv,, = m (dv,/dt) (6) 7

F. = s[v. - w(y)] = m (dv,/dt)
6-

where w(y) is the water velocity as a function P

of height. Let - = m/s = mvr/(m g) = 0.080 5-

second for our plastic balls. The parameter -r
is the relaxation time for the fluid drag on the
ball. Then

dv
S(-v,/r) - (mbg/m) 2-(7) " _

dv i -
dt- {w[y(t)] - vX}/r
dt E

The y component can be solved completely 4
[Fowles, 1962]: a

v,,(t) = -v + (v, + v,,)e '  (8) 3
y(t) Y. - vt + T(VT + V,o)(1 - e*) 2

where v,o and yo are the y velocity and height I-

at time t = 0, respectively. The x component is
complicated by the dependence of the water.- 20 -10 0 I0 2'0 30 40
speed on height and thus on time [Coddington,

1961]: angle in degrees

e, Fig. 6. Distribution of takeoff -angles a and

V( = e- e"'/w[y(t)] dt + voe '/r (9) collision angles f, both measured from the hori-
T zontal. The water speed was 35 cm/sec.
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If w is constant,

v0(t) = w (vo - w)e '  (10)

zx(t) = xo + wt + T(v0o - w)(1 - et)

The ball reaches the top of its arc at the time
t, given by v,(t,) = 0, or

t = -r in [VT/(VT + v0o)] (11)

and rises to the height

h y(t) = Yo + TVo + TT In V

(12)

The average value of vo for all saltations photo-
graphed was 7.4 cm/see, which corresponds to

y, - yo = 0.10 cm and t = 0.027 second (cf.
Figure 2).

If impact occurs when the ball is at height

y,, the time of impact t, is given (equation 8) :

by the transcendental equation

(VT+ v o) 1 - e Fig. 7. A set of typical saltation trajectories
S+ ro from the Runge-Kutta simulation. In this case

+ (Yo - y,)/[r(vr + v,.o)] (13) - 0.04, and 0 was chosen uniformly at random
between 0* and 12. The particle moves from left

which may be solved for t1 graphically or to right. The water speed w was 40 cm/sec.

numerically by iteration. For y, = y. we have
the upper bound

8 rarely approached the predicted value of 270
" t, < r[1 + (v.o/Vr)J (14) (Figure 6).

Experimentaly, v, was in the range 1.9 to 12.8 If dimensionless velocities are defined in rela-

cm/sec; thus a complete saltation trajectory tion to the terminal velocity (v, = v,/vr, v, =

takes less than two relaxation times (v, = 18.1 v/vT, , = w/vr) and the relaxation time

cm/sec), and at collision the ball has not yet is taken as the time unit, then the dimensionless

reached terminal velocity. Thus we cannot ex- equations of motion are functions of the single

pect Bagnold's relationship [Raudkivi, 1967] parameter a:

' tah = -v(t)/v,(t,) = vT/w (15) dv,/dt = -v, - 1 (16)

to hold. for saltation under water. It has been - dy,/dt = co - v.

claimed [Raudkivi, 1967] that 'if the grain Bagnold [1935] suggested that for a given
does not rise high enough to reach full wind initial speed a sand grain saltates a maximum
velocity, it will also not reach the full terminal distance downstream if it takes off vertically.
velocity of fall and the angle 13 will not be To the contrary, we found from the above equa-
affected much.' However, by subtracting vT/w tions that at a dimensionless initial speed
in equation 15, we find that vr/w is an upper v = 10, for instance, the sand grain takes off
bound for tan 8 whenever tan a = (v,/v,,) optimally at angles a of 28 0 , 450, 63', and 840
> (-v,/w), which holds for all but extreme for < = 0.5, 1, 2, and 10, respectively. His
backward bounces. Indeed, in our experiments assumption seems correct only for quite large
when w = 35 cm/see, the measured values of water speeds or very small initial particle speeds.
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MAINTENANCE OF SALTATION energy and continued until a 'steady state'

Bouncing is a mechanism whereby transla- trajectory was obtained. The same final arc
Bouncing is a mechanism whereby transla- was obtained in both cases. The parameters of

tional energy may be transformed from one these arcs as a function of 9 are shown in
direction to another. Since a saltating grain Figure 8. Their most remarkable property is
arrives at the bed at a low angle 83, a collision that for a given water speed w there is a critical
essentially converts energy in the x direction value of 0 below which a ball will not move
into energy in the y direction. We have seen at all. (Fixing 0 in the simulation is equivalent
that an underwater collision retains some of the to replacing a statistical variable by its mean.)
character of an elastic bounce through the re-
tention of the tangential velocity component. DISTANCE BETWEEN ENTRAPMENTS
Nevertheless, a certain fraction of the energy The stochastic theory of gel permeation
is lost (Figure 3), and if this loss is not com- chromatography [Carmichael, 1968] assumeschromatography [Carmnichael, 1968] assumes
pletely made up fairly soon by energy taken that the gel beads contain numerous holes
from the moving water, saltation may damp in which polymer molecules are temporarily
out. trapped. There is a spectrum of hole sizes, and

To investigate the continuation of saltation, the basic assumption is that a polymer mole-
we wrote a computer simulation in Fortran by cule may be trapped by any hole wider than
using an idealized bed that the saltating particle itself. In a sand bed, the holes are formed by
always strikes at the same height and for the sand itself, so that we may speak descrip-
which each point struck has a controllable tively of the 'self chromatography' of sand. We
angle 0 (the angle of inclination being 90 - will attempt to define a hole and to derive the
0). We assumed that the normal component of distribution of hole sizes and the mean distance
velocity is lost on impact and that the tangen- to the next hole.
tial component is retained. Rather than calcu- We ignore saltation temporarily and pretend
late the detailed dynamics of collision rolling, that a grain rolls over the bed in more or less
we assumed that no energy is gained during continuous contact with it. Suppose that a
the collision and that the takeoff angle is given hole looks circular from the top, and let the
by a = 0 sin 7 = 0 sin (9 - fS). Our units surface density of holes of radius R be p(R).
of time and distance were fixed by setting r = 1 If a grain of radius r were to roll a distance 1,
and v, = 1. The velocity profile was taken then its center would have passed over 2R1
as constant. p(R) holes of radius R. Therefore the number

At first we allowed 0 to vary randomly with of holes per unit path length h(r) for a grain
a uniform distribution between 00 and some of radius r is
maximum at each collision. The trajectories
were calculated by using a fourth order Runge- h(r) = 2 Rp(R) dR (17)
Kutta integration of equations 7 [McCracken
and Dorn, 1964], and the results were displayed The term p(R) depends on the statistics of
as they were computed on the cathode ray tube placement of grains above and below the mean
of an Adage graphics computer (Figure 7). bed level. This placement in turn depends on
After the parameters were varied for a while to the packing and the grain radius distribution
see what would happen, it became clear to us g(r). In the spirit of geometric probability
that the roughness of the bed was of primary [Kendall and Moran, 1963], consider a ran-
importance for the continuation of saltation. domly close packed bulk sample of spherical
In particular, if the bed was smooth (0 = 900), particles, and imagine creating a bumpy sur-
the saltations damped out, and the particle face by passing a mathematical plane through
rolled along. such sand and removing all grains whose cen-

To quantify these results, we ran a series of ters lie above the plane. The interstices may
different simulations with 0 fixed and calculated be imagined filled with plaster. (This condition
only the starting and final parameters for each reduces the number of holes for the smaller
are by using equations 8, 10, and 13. Simula- particles, but they are normally absent from
tion runs were started at both high and low natural sands anyway.) Thus each grain that
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intersects the reference plane and is removed to a particle of radius r > y whose center is
leaves a dent in that plane, and each grain that below the plane is proportional to g(r). There-
remains leaves a bump. By symmetry, the fore the distribution of bump heights (and dent
distribution B(y) of the heights of the bumps depths) is given by
is identical to the distribution of the depths of [f. f ]
the dents. We will assume for now that such a B(y) = g(r) dr g(r) dr dy
surface is a good approximation of a natural 0

sand bed. (18)
If we assume a bump of height y above the The number of dents equals the number of

reference plane, the possibility that it is due bumps, and we next assume that their place-

0/\ -2.0

/\

/\

Yh0.0 1.

0.86- -1.6

0.6 - • . i 1.2

0.4- 1 -0.8

I.:
/I...0.2 - 0.4A'!

0.00.
0 10* 20* 30* 40* 50* 60* 70* 80

°  
9008

Fig. 8. Properties of saltation arcs over an idealized bed for which each point struck isat a fixed angle e (see Figure 5). The dimensionless mean x velocity T divided by the di-mensionless water speed w (terminal velocity vi = 1) is shown (solid lines, left scale). Forw = 2 the distance traveled along the bed x (dotted line, right scale), the maximum heightyA (dashed line, 1/10 left scale), and the angle p (dashed and dotted line, 10 X left scale, indegrees) are shown. This p is considerably less than Bagnold's . = tan-(1/2) = 26.57. Theangle a (not shown) is greater than p everywhere and follows a curve of a similar shape.
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ment on the bed is not correlated. If the bed tedious even for the simplest form of the

were one-dimensional (as in our experimental distribution g(r). Thus we chose to use munmer-

flume), then the probability of a dent being ical integration and to take g(r) as the log

followed by a dent in the downstream direction normal distribution:

would equal the probability of the dent being exp -In (r/\)r1/(2o-')}
followed by a bump. If the depth of the hole g(r) = r(2)/ (22)

formed by the dent is defined as the depth of

the dent in the first case and as the sum of where 7 is the geometric mean radius and a is the

the depth of the dent and the height of the logarithm standard deviation. Natural sands

bump in the second case, then the probability sometimes follow this distribution [Krumbein,

H(z) that a hole has a depth z is 1954; McIntyre, 1959], and there is even theoreti-

cal justification for it [Kolmogoroff, 1941; Aitchi-
H(z) = 2[B(z) + B * B(z)J (19) son and Brown, 1957; Herdan, 1960].

where the asterisk denotes convolution [Feller, Einstein [1937, 1950] reported that a sand

1966]: grain travels an average distance of 200 times
its radius before stopping. In Figure 9 we have

B * B(z) = B(z - y)B(y) dy (20) calculated the number of radii grains travel
versus their radius for a few values of a. This

A two-dimensional bed could be treated as number is approximately constant for most of

such, but the combinatorics would be more the particles in a given distribution g(r) and

complicated and the hole harder to define, remarkably so for larger o. Moreover, the num-

Even for a one-dimensional bed, other cases ber of radii traveled is roughly independent of

are possible, such as a bump followed by a a. We have taken Einstein's [1937, Tables 20

higher bump or two dents in a row followed and 22] original data for three sizes of grains

by a bump, and so forth. We assume that passed over two bed mixtures to show that

equation 19 yields an adequate approximation the calculated curves are as 'flat' as the range

to such an infinite series, and scatter of his data could require.

We introduce the closeness of the packing However, our curves indicate that the holes

of the sand by assuming that the radius of a are only six to 15 radii apart, instead of 200.

hole is equal to its depth, so that p(R) = The major part of this discrepancy is of course

kHI(R), where k is a constant. If a is the frac- due to saltation, which we have been ignoring

tion of the bed surface covered by holes of all in this section. A saltating particle jumping

sizes, then k may be evaluated from over many holes samples only a small part of

= the bed during its collision with it. Bagnold

a = -R2p(R) dR = k rR 2 IH(R) dR [1935] has found that the distance traveled
0 by a saltating particle is fairly independent of

(21) its size; thus the proportionality of the distance

if a value of a is given. That a = 1/2 seems traveled to the radius should remain roughly

reasonable. constant with r but should be increased. In

In summary, we start only with the grain the one-dimensional flume, the average saltation

size distribution g(r), create a surface with length was 3.5 cm; thus if the ball samples one

reasonably well-defined statistical properties, ball diameter of bed per bounce, the calculated

evaluate the bumpiness B(y) in terms of g(r) mean distance before entrapment becomes 40

(equation 18), obtain the distribution of hole radii. (Because of the short length of our flume,

depths H(z) in terms of B(y) (equation 19), the difficulties of defining a representative bed

and then obtain the surface density of holes configuration, and the packing regularities of

p(R) = kH(R), where k is a constant that the bed, we did not attempt to collect data on

can be estimated from equation 21. The mean entrapments. They were occasionally observed,
distance between holes for a rolling particle especially with freshly disturbed beds.)

of radius r, 1/h(r), is then evaluated' from Other factors that could affect the calculated

p(R) by using equation 17. distance to entrapment (the first three tending
Evaluation of this sequence of integrals is to increase it) are. (1) Our hypothetical bed
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would tend to be flattened with use both by of a hole does not take into account the angle
filling in holes and by segregation, which violates of repose of the particle in the hole, which

the assumption that 'particles are equally avail- depends on the local fluid velocity. Thus some

able at the surface and in the main body of of our holes would not retain all particles that

the bed' [Einstein and Chien, 1953]. (2) Since could fit in them. (4) Einstein's [1937] data

one particle can roll sideways around another pertain to gravel of radius 0.8-1.7 cm; such

rather than go over it, a full two-dimensional pebbles are not hydraulically equivalent to

treatment of holes in a bed may result in a natural sands.
lower density of holes p(R). (3) Our definition Although there are a number of statistical

100

1.8
0

0.03

- 1.6

0.06 -1.4

0.1
-- -1.2

- 0.8

0.03

i ' .o-0.2o

";0.1

.... ..... .. .......- J 0 .0

Fig. 9. The number of radii traveled (solid lines, left scale) versus r/? for four values of a.
The corresponding log normal size distributions g(r) are shown (dotted lines, right scale). (For
a = 0, g(r) is a Dirac delta functionl at r/f = 1.) The plotted points (100 X left scale) are Ein-
stein's [19371 data for three sizes of gravel (1.7, 2.4, and 3.4 cm in diameter) over two beds (circles
are beds 2.9 cm in diameter, and triangles are those 2.3 cm in diameter). His proposed constant
relationship, the number of radii being 223 (average of his data), independent of r is shown (dashed
line).
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results on the random close packing of equal over a rough bed. The flow can be effectively
sized spheres [Coxeter, 1958, Scott, 1960, 1962; laminar.
Bernal and Mason, 1960; Frisch and Stillinger, In summary, we have designed, constructed,
1963], little work has been done on packings and used a one-dimensional flume that makes
with a distribution of grain sizes [Krumbein, the dynamics of saltating particles readily
1954; Kahn, 1956]. The preceding result on the visible. We found that an underwater collision
distribution of holes on a heterogeneous flat has an elastic and an inelastic component, that
bed is the first such theoretical result known to particles do not reach terminal velocity before
us, except for the derivation of g(r) from collision, and that saltation is maintained by
sections of packed material [Kendall and the roughness of the bed, which 'transforms' the
Moran, 1963]. Many other properties of sand kinetic energy of the particle from a horizontal
beds, such as the distribution of contact angles to a vertical direction. (A considerable amount
0 or the collisional scattering of grains per- of kinematic and hydrodynamic experiment and
pendicular to the downstream direction, could analysis has yet to be done for real sand
perhaps be profitably studied from the view- grains.) We proceeded to use a rough geometric
point of geometric probability. probability argument to derive the distance a

particle goes before entrapment by a 'hole' in
DISCSSION. the bed, which turned out to be approximately

Bagnold [1956] claims that 'owing to viscous proportional to its radius, in agreement with
effects in liquids the grain's velocity on return the experiments of Einstein [1937]. In the
to the bed is insufficient to cause any observ- appendix we rederive the probability that a
able rebound or any disturbance of the bed particle travels a given distance in a given
grains, at any rate at feeble flow strengths .. . amount of time. Our study was inspired by an-
(just above threshold.)' However, our plastic alogies between the motion of sand and the
balls bounced readily and occasionally dislodged chromatography of polymer molecules. This field
a ball in the bed. Danel et al. [1953] observed is fruitful for interdisciplinary studies, as the
for sand in both air and water that 'the par- 'soil polymer parallels' of Krizek [1968] also
ticles ricochet off the bed and thus lose only a show.
portion of the kinetic energy imparted by the
fluid.' APPENDIX: STOCHASTIC ANALYSIS OF SAND

The importance of saltation as a means of TRANSPORT

sand transport in water has been questioned Other authors (e.g., Hubble and Sayre
[Kalinske, 1947] because the height of the [1964]) have rederived Einstein's equations for
trajectories is 1/800 that in air. However, as the probability distribution of grain movement
Danel et al. [1953] pointed out, 'rolling on the associated with saltation. This derivation as-
bed without a clear-cut separation or simple sumes a distribution of distances traveled (which
loss of contact is not easy to imagine,' so that are proportional to times spent) by the par-
almost by definition any sand transport involv- ticle while it is traveling in the fluid state and
ing single grains occurs by saltation. The major out of contact with the bed. This derivation
exception is the rolling or skidding of, say, a also assumes a distribution of times spent by
pebble over much finer sand, where the size the particle while it is in contact with the bed.
ratio is quite large [Einstein and Chien, 1953]. However, no distance is assumed to be traveled

Turbulence is necessary to dislodge a grain by the particle while it is in contact with the
and start it moving (but cf. Yalin [1963]). bed.
However, as Bagnold [1954, 1966] has pointed We will now derive the probability distribu-
out, once a large number of interacting particles tion (equation A14) allowing a distribution
are on the move, turbulence need not be in- of times spent and distances traveled by the
voked to explain their continued motion. But, particle while it is both in and out of contact
as we have seen in the section on the mainte- with the bed. Rolling, for example, is per-
nance of saltation, all that is really necessary mitted under these assumptions. Then Einstein's
for continued saltation of a particle is that the result is obtained as the aforementioned special
water velocity be sufficiently high (Figure 8) case (equation A17).
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Consider a model of sand transport in which Each of equations Ala and Alb defines the

a sand grain can be in either of two states, transition probability for a Poisson process.
State 1 will be called the fluid state. While it That is, we have assumed for each of the
is in this state, the sand grain is moving in processes defined by equation Al that (1)
the water phase and remains out of contact events occur randomly, (2) the probabilities
with the bed. State 2 will be called the contact of events in any two nonoverlapping intervals
state. While it is in state 2, the sand grain is of time are independent of one another, (3)
in contact with the bed of the flume or the the probability of an event in an interval of
natural bed of a flowing body of water. The time is not a function of time, and (4) the
sand grain can be either stationary or rolling probability of a total of two or more events
while it is in contact with the bed. occurring in (t, t + At) is 0(At).

When a sand grain passes from the fluid The solution of equations Ala or Alb
state to the contact state, this transition will [Bharucha-Reid, 1960] yields
be called the process of capture. When a sand
grain moves from its position in contact with p(i; Xt) ( exp (-Xt) (A2)
the bed into the fluid state, this transition will = exp (-t) (A2)
be called the process of release, where p(i; At) represents the probability that

The term saltation has been coined to de- the system has undergone i events at time t.
scribe the bouncing motion of sand grains when As a solution to equation Ala, for example,they are in transport by wind or water. In our equation A2 would represent the probability
nomenclature, therefore, the term saltation de- that (given that a sand grain began in the con-
scribes the entire cycle of a sand grain con- tact state at t = 0), an additional i - 1sisting of capture, time spent in the contact captures had occurred by time t, the total
state, release, and time spent in the fluid state, thus being i separate instances when the sand

To complete the framework for the model, grain resided in the contact state. Equation A2
we also make the following two physical assump- represents Poisson distributions in time for the
tions: (1) that sand grains move independently times spent by sand grains in the fluid and
of one another and (2) that the processes of contact states.
capture and release occur independently of one As it stands, p(i; At) is already normalized in
another and that each of these processes is i. It must, however, be normalized in t, since
random, we ultimately seek a normalized probability

The randomness of the processes of capture distribution in time for the sand grains to
and release assumed in assumption 2 can arise travel an arbitrary but fixed distance.
physically from random fluctations in the water Define
velocity in the vicinity of the sand grain while
it is in either the fluid or the contact state. p(i X t)
We define P,(t) -- = p(i; Xt) (A3)

prob (fluid--* contact) = X, At + 0(At) (Ala) p(i; Xt) de

(read as the probability of the sand grain making where P,(t) dt is the probability that a sand
the transition from the fluid state to the contact grain undergoes its ith capture or release in
state, i.e., the probability of capture) and the time interval (t, t + dt) and P,(t) is a

probability distribution in time.prob (contact -, fluid) = X2 At + 0(At) (Alb) Let t, and to be the times spent by sand
where A1 and A, are the rate constants for grains in the fluid and contact states, respec-
capture and release, respectively. Each is a tively:
first order rate constant with units of (time)-'. P,(t) = Xlp(i; Xt,) (A4a)
The magnitudes of these rate constants will in
general be functions of the size of the grain P,(to) = X2p(i; X.t) (A4b)
being transported, the grain size distribution in Assumption 2 required that the random
the bed, and the mean water velocity near the variables associated with the times t, and t,
bed. must be statistically independent. Thus t, + t.



456 GORDON, CARMICHAEL, AND ISACKSON

is the total time t for a sand grain to travel times:
some fixed but arbitrary distance.

Since the random variables associated with P{I = - exp (- t) (A )
the times t, and to are statistically independent, (i + 1)! (-Xt) (All)
the probability distribution of the sum of the The exponent i + 1 appears in equation All
times t, plus to (t) is the convolution of the because, in addition to being captured i times
probability distributions in the times t, and t.: in the course of transport, the sand grain began

its series of saltations in the contact state at
P,(-1 + t) = P,(t) =- P{ T = t I i} (A5a) t = 0.

and Evaluation of P(t) in equation A10 by using
the expression for P {I = i} from equation

P{T = t i} = P,(t,) * P,(t) (A5b) All and P {T = ti} from equation A9 yields

where the asterisk denotes the convolution op- P(t) = exp [t('yX2 - X, - 2X,)J
eration applied to the two integral-valued prob-
ability distributions. • 1X2 h'X/(7X1 + X2  YX- 7 2)] 1/,

2

P{T = tji} represents the conditional prob- I, [4-Xt 2( YX + - ,x2)] ' 2  (A12)
ability that the random variable T associated
with the total time required for the sand grain [Irving and Mullineux, 1959], where we first
to move a prescribed distance has a particular used the substitution t. = t - t, to eliminate
value t, on the assumption that the sand grain the variable t. and then eliminated tt by de-
had undergone i captures in traveling that
distance. 40 -

Equation A5 is solved by using the probabil-
ity generating function [Feller, 1968] h(s; At) 3o-
defined as

h(s; Xt) = p(i; Xt)s' (A6) 20o
i=0

For the special case of two Poisson distribu-
tions,

10 -
h(s; Xt,1 + X,2t,) = h(s; X.t,)'h(s; X2to) (A7) - 9

The inversion of h(s; A1 t, + A t,) to yield ~7
a probability distribution is straightforward. 6

The solution of equation A7 by using the defi- 5-
nition of the generating function from equation

4 -
A6 yields the Poisson distribution

p(i; Xt, + Xt) (AS)

Therefore
2-

P{T = t i = XX2p(i; X\tf + X2) (A9)

Define P(t) as the probability as a function
of time that the sand grain travels a particular
specified distance. Then I 2 3 4 5 6 7 8 9 o10

flashes while ball was in contact

P(t) = P{ T = t I iP{I = i} (A10) with bed (4000 flashes/min )
-o Fig. 10. State 2 distribution of rolling times

where P{I = i} represents the absolute prob- for a ball in approximate contact with the bed and
ability that the sand grain has been captured i traveling at a reduced speed.
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10-

9-

.- --6

5-

S4- - -

o3-

I 2 3 4 5 6 7 8 9 10 II 12 13 14 15 16 17 18 19 20
flashes while ball was moving in fluid phase

(4000 flashes/min )

Fig. 11. State 1 distribution of times in the fluid phase between contacts (times spent in
saltation arcs).

fining y as the fraction of time spent in the x = trw = tow (A16)
fluid state by the sand grain while it traveled
the prescribed distance; that is, under the restriction of equation A14.

We define A/w = X! and substitute the
7' = t,/1 0 < -y. 1 (A13) results for x in terms of to from equation A16l

I is a first order Bessel function, into the expression for P(t) in equation A15.

Consider now the following special simplifica- The expression for sand transport originily
tion of the physical model. Assume that the derived by Einstein [1937] and rederived in a

times spent by the sand grain in the mobile mysterious (to the present authors) fashion by
phase are not Poisson distributed but constant. Todorovi6 et al. [1967] is then recovered. (Sub-
Let us assume further that this constant time scripts 1 and 2 must be switched.) We change

the notation from P(t) to P(x, t) to indicate.,
is in fact the time required for the water to the notation from P(t) to P(x, t) to indicate
travel the prescribed distance (to be denoted that the new probability distribution has been
as to). transformed by using equation A16 into a fune-

If the random variable T. associated with the tion of both distance and time:

times spent by the sand grain in the mobile P(x, t) = exp (-X,2 t - ,'x)(,' t)
phase can take on only one value (namely to),
then equation A4a becomes .I[(4X,' 2 x) 11 2 ]  (A17)

Pi(t,) = 1 t,, = to (A14) Einstein's [1937] notation differs slightly

P,(t,5 ) = 0 otherwise from ours. His analysis proceeded from the
a priori assumption of a proper set of units

McQuarrie [1963] has obtained the density for time and distance so that the two rate
function in time for this case by using the same constants V and A2 would be unity. In other
general procedure described in the present work words, he worked in reduced variables. To
except that he solved equation A5b by using convert his expression to our equation A17,
the simplification for P,(t.) from equation one need only substitute A/'x and \ 2t for his
A14 by Laplace transforms. From that point values of x and t, respectively.
on our method follows step for step that of Einstein's probability distribution in reduced
McQuarrie. He obtained the following expres- variable notation can also be formally obtained
sion for P(t) by using equation A14: by the process of randomizing the y probabil-

1/2 ity distribution [Feller, 1966]. The physics of
P(t) =exp(-X2 t- t).( 2t/t) 2  the transport process becomes difficult to

I[(4XIX2tto)'/2J (A15) visualize, however, when this formal technique
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is used. A full stochastic analysis of a single ation separation of polymers, J. Polym. Sci.,

saltating grain of sand would require splitting Part A-2, 6, 517, 1968.
state 2 into two cases: (1) a full stop, as Chepil, W. S., Dynamics of wind erosion, 2,

state 2 avto two cases: (1) a full stop, as Initiation of soil movement, Soil Sci., 60, 397,
treated above, and (2) rolling on the bed at 1945.
a speed significantly less than that during free Chepil, W. S., The use of evenly spaced hemi-

saltation. The experimental distribution of such spheres to evaluate aerodynamic forces on a

rolling times is illustrated in Figure 10 (cf. soil surface, Eos Trans. AGU, 39, 397, 1958.
Chepil, W. S., Equilibrium of soil grains at the

Figure 2). It is considerably different from the threshold of movement by wind, Soil Sci. Soc.
distribution of times in the fluid state (Fig- Amer. Proc., 23, 422, 1959.
ure 11). Chepil, W. S., The use of spheres to measure lift

and drag on wind-eroded soil grains, Soil. Sci.
Soc. Amer. Proc., 25, 343, 1961.
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